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Oscillating fields can make domain patterns change into various types of structures. Numerical simulations
show that concentric-ring domain patterns centered at a strong defect are observed under a rapidly oscillating
field in some cases. The concentric-ring pattern appears near the threshold of spatially uniform patterns in
high-frequency cases. The threshold is theoretically estimated and the theoretical threshold is in good agree-
ment with numerical one in a high-frequency region. The theoretical analysis gives also good estimations of
several characteristics of domain patterns for high frequencies.
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I. INTRODUCTION

Rapidly oscillating fields cause interesting phenomena in
a wide variety of systems. Those phenomena are often dis-
cussed in the view of stabilization of an unstable state. One
of the simplest examples is the problem of Kapitza’s inverted
pendulum, which was generalized by Landau and Lifshitz
�1�. The key idea is to separate the dynamics into a rapidly
oscillating part and a slowly varying part. The method has
been applied to various systems, e.g., the classical and quan-
tum dynamics in periodically driven systems �2,3�, the stabi-
lization of a matter-wave soliton in two-dimensional Bose-
Einstein condensates without an external trap �4–6�, and
magnetic domain patterns traveling at a slow velocity under
a rapidly oscillating field �7�.

Domain patterns are observed in a wide variety of sys-
tems, and they show many kinds of structures �see, for ex-
ample, Refs. �8–10� and references therein�. Magnetic do-
main patterns are one of their good examples. While they
usually exhibit a labyrinth structure under zero field, they
also show other kinds of structures under an oscillating field.
For instance, parallel stripes and several kinds of lattice
structures are observed in experiments and numerical simu-
lations �11–13�. Moreover, traveling patterns �7� and more
interesting patterns, e.g., spirals and concentric-ring patterns
�14,15�, have been observed, depending on the strength and
frequency of the field. Spirals and concentric-ring patterns
appear under a large-amplitude and high-frequency field in
experiments, and the field range where they appear is not
wide.

In this paper, we investigate effects of an oscillating field
by numerical simulations and theoretical analysis, focusing
on the emergence of concentric-ring magnetic domain pat-
terns surrounding a strong defect. Recently, two theoretical
methods were proposed to investigate the effects of an oscil-
lating field on pattern formation in ferromagnetic thin films
�7�. One gives the “time-averaged model” and the other
gives the “phase-shifted model:” The former is derived by
averaging out rapidly oscillating terms, and the latter in-

cludes the delay of the response to the oscillating field. In
this paper, the time-averaged model is applied to theoretical
analysis since it is suitable for discussing “stationary” do-
main patterns which oscillate periodically but are unchanged
in terms of a long-time average. The theoretical line of the
threshold for nonuniform patterns is derived from the time-
averaged model. The theoretical threshold is consistent with
the numerically simulated one in a high-frequency region,
where a concentric-ring pattern appears around the defect.

In fact, there are several techniques to study domain pat-
terns under a rapidly oscillating field theoretically. Applying
a multi-time-scale technique �16,17�, one can obtain more
complex equations in a better approximation than the time-
averaged model. In other words, the time-averaged model
corresponds to the lowest orders of multi-time-scale expan-
sions. In this paper, the time-averaged model is employed
since it has a simple form and is efficient enough to discuss
the appearance of concentric-ring patterns in a high-
frequency region.

The creation of a concentric-ring pattern can have differ-
ent mechanisms. One of them is boundary conditions, and
the strong defect is a kind of boundary condition. The selec-
tion of a pattern depends on boundary conditions as well as
the field frequency or other parameters �18�. For example, in
nematic liquid crystals under a rotating magnetic field, it is
sometimes observed that the center of concentric rings nucle-
ated by a dust particle moves away from it �19�; Faraday
experiments of viscous fluid and granular layers in round
cells show concentric-ring patterns or spiral patterns �20,21�
in some cases. On the other hand, concentric-ring patterns
can also appear spontaneously. In fact, spiral patterns as well
as concentric-ring patterns appear in the absence of a strong
defect under some conditions �14,22�. However, we will not
consider spontaneously created concentric-ring patterns in
this paper since those patterns are beyond the scope of this
paper.

The rest of this paper is organized as follows. In Sec. II,
the model of our system is introduced and numerical results,
i.e., the phase diagram for concentric-ring patterns and pro-
files of the domain patterns, are exhibited. In Sec. III, we
discuss the threshold for nonuniform patterns, employing the
time-averaged model. Moreover, several characteristics of a*kudo.kazue@ocha.ac.jp
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domain pattern estimated from the time-averaged model are
compared with those from the numerical simulations. The
mechanism for the appearance of a concentric ring pattern is
discussed in Sec. IV. Conclusions are given in Sec. V.

II. NUMERICAL SIMULATION

Our model is a simple two-dimensional model �see Refs.
�7,23,24� and references therein�. The Hamiltonian of the
model consists of four energy terms: Uniaxial anisotropy en-
ergy Hani, exchange interactions HJ, dipolar interactions Hdi,
and the interactions with the external field Hex. We consider
a scalar field ��r�, where r= �x ,y�. The anisotropy energy is
given by

Hani = �� dr��r��−
��r�2

2
+

��r�4

4
� , �1�

where ��r� is employed to express the effect of defects or the
roughness of a sample. This term implies that the values
��r�= �1 are preferable. The positive and negative values of
��r� correspond to up and down spins, respectively. The ex-
change and dipolar interactions are described by

HJ = �� dr
����r��2

2
�2�

and

Hdi = �� drdr���r���r��G�r,r�� , �3�

respectively. Here, G�r ,r��	�r−r��−3 at long distances.
These two terms are competing interactions: HJ implies that
��r� tends to have the same value as neighbors, while Hdi
implies that ��r� prefers to have the opposite sign to ones at
some distances. The interactions with the external field is
given by

Hex = − h�t�� dr��r� . �4�

Here, we consider a spatially homogeneous and rapidly os-
cillating field,

h�t� = h0 sin �t . �5�

From Eqs. �1�–�4�, the dynamical equation of the model is
described by

���r�
�t

= −
	�Hani + HJ + Hdi + Hex�

	��r�
= ���r����r� − ��r�3�

+ ��2��r� − �� dr���r��G�r,r�� + h�t� . �6�

The numerical procedures are almost the same as those of
Refs. �7,23,24�. For time evolution, a semi-implicit method
is employed: the exact solutions and the second-order
Runge-Kutta method are used for the linear and nonlinear
terms, respectively. For a better spatial resolution, a pseu-
dospectral method is applied. Namely, the time evolutions

are calculated for the equation in Fourier space correspond-
ing to Eq. �6�,

��k

�t
= ���� − �3���k − ��k2 + �Gk��k + h�t�	k, �7�

where � · � denotes the convolution sum and Gk is the Fourier
transform of G�r ,0�. Here, we define G�r ,0�
1 / �r�3. Then,
one has

Gk = a0 − a1k , �8�

where k= �k� and

a0 = 2
�
d

� dr

r2 , a1 = 2
 . �9�

Here, d is the cutoff length of the dipolar interactions. In the
simulations, we set d=
 /2, which results in a0=4.

The effect of a strong defect is incorporated in the aniso-
tropy term, Eq. �1�. Here, we put the strong defect at the
center, i.e., the origin �r=0�, as follows:

��r� = �10 �r = 0�
1 �r � 0� .

� �10�

This condition implies that the spin at the center will not flip
unless the applied field is too strong. The parameters in Eqs.
�1�–�3� are given as �=2, �=2, and �=2� /a1=2 /
. The
simulations are performed on a 128�128 lattice with peri-
odic boundary conditions.

The concentric-ring patterns simulated by the numerical
calculations appear in a limited region of the frequency ���
and the amplitude �h0� of the external field. Figure 1 shows
the �-h0 phase diagram for concentric-ring patterns. The
solid line and the dashed lines are drawn by using the results
of the numerical simulations and theoretical analysis, respec-
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FIG. 1. �Color online� Phase diagram for the concentric-ring
patterns surrounding a strong defect at the center. The horizontal
and vertical axes are the frequency ��� and the amplitude �h0� of
the external field, respectively. The red solid lines and blue dashed
line are obtained from the numerical simulations and theoretical
analysis, respectively. The values of � and h0 of each snapshot are
as follows: �a� � /2
=2 /3
0.667 and h0=3.05, �b� � /2
=2 /3
and h0=2.8, �c� � /2
=0.1 and h0=1.2, �d� � /2
=0.5 and h0

=2.5, and �e� � /2
=0.8 and h0=3.56.
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tively. The theoretical analysis is explained in Sec. III.
Concentric-ring patterns are seen only in the region between
the upper and lower solid lines. Above the upper solid line,
one sees only spatially homogeneous patterns except for the
vicinity of the center. On the contrary, stripes, labyrinth, or
lattice structures appear below the lower solid line.

Actually, it is difficult to find the exact boundaries of the
region where concentric-ring patterns appear. One may think
that concentric-ring patterns can appear right on the numeri-
cal threshold line in a low-frequency region. However, even
if a concentric-ring pattern could appear on the threshold, it
would be hard to find its exact value. In a low-frequency
region, the boundary between spatially homogeneous pat-
terns and nonuniform patterns �e.g., stripes, labyrinth. and
lattice structures� is sharp. In contrast, in a high-frequency
region, the boundaries between concentric-ring patterns and
other patterns are unclear: they are crossover lines rather
than transition ones. Actually, for high frequencies, a few
concentric rings around the strong defect coexist with other
patterns �i.e., stripes, labyrinth or lattice patterns� in the re-
gion near the boundary lines of the concentric-ring-pattern
region. In other words, a few concentric rings start to appear
at the lower boundary, and the number of rings grows as h0
increases. At the upper boundary, nonuniform patterns disap-
pear except for the vicinity of the strong defect.

The profile of each domain pattern is useful to see the
time dependence of the pattern. The profiles corresponding
to the snapshots �a� and �b� in Fig. 1 are shown in Fig. 2. The
profile is a section which includes the center �the defect� and
is perpendicular to x axis �the horizontal axis�. The profiles
show that the pattern is oscillating without deformation ex-
cept for the vicinity of the center. The amplitudes of the
oscillation and that of the pattern �i.e., the difference between
the maximum and minimum values of ��r� except for the
vicinity of the defect at a certain time� depend on the ampli-
tude and frequency of the field.

III. THEORETICAL ANALYSIS

Since a rapidly oscillating field is applied, Kapitza’s idea
�1� is applicable to the analysis of the pattern formation in
this system. In fact, the profiles in Fig. 2 validate the use of
the idea. In other words, the results in Fig. 2 justify the fact
that the variable ��r , t� in Eq. �6� consists of a spatially
homogeneous oscillating term �0�t� and a slowly varying
term 
�r , t�. In this section, the domain patterns in the ab-
sence of a defect are discussed by employing the time-
averaged model �7�. Namely, ��r� in Eq. �10� is replaced by
unity, i.e., ��r�=1.

First of all, let us consider the spatially homogeneous os-
cillating solution �0�t� of Eq. �6�. Then, one has

�̇0 = ���0 − �0
3� − ��0� dr��r��−3 + h�t� . �11�

Its solution can be approximately written as

�0 = � sin��t + 	� , �12�

where 	 is a phase shift which comes from the delay of the
response to the field. Substituting Eq. �12� into Eq. �11� and

omitting high-order harmonics �i.e., sin 3�t�, one can evalu-
ate � and 	. The value of � is obtained from the following
equations �7�:

9

16
�2�6 −

3

2
��0�4 + ��2 + �0

2��2 = h0
2, �13�

where �0=�−�a0.
Now, we consider the equation for the slowly varying

variable 
�r , t� which describes a spatially dependent pat-
tern. Substituting ��r , t�=�0�t�+
�r , t� into Eq. �6� and av-
eraging out the rapid oscillation, one obtains the time-
averaged model

�
�r�
�t

= �1 −
3

2
�2��
�r� + ��2
�r� − �� dr�


�r��
�r − r��3

− �
�r�3. �14�

The linear stability of Eq. �14� leads to the theoretical
curve in Fig. 1 corresponding to the threshold for the exis-
tence of nonuniform patterns. Substituting 
�r�
=�kexp�ik ·r�
k into Eq. �14�, one has the linear part of the
equation written as
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FIG. 2. Profiles of the domain patterns corresponding to the
snapshots �a� and �b� in Fig. 1: �a� � /2
=2 /3
0.667 and
h0=3.05, �b� � /2
=2 /3 and h0=2.8. The upper and lower thin
curves in each figure are the profiles at t= �n+1 /2�T and t=nT,
respectively, where n is an integer and T=2
 /�. The middle thick
curve is the time-averaged profile.
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�
k

�t
= �k
k. �15�

Here,

�k = �1 −
3

2
�2�� − ��k − k0�2 + �k0

2 − �a0, �16�

where k= �k� and k0=a1� / �2��. Since �k has the maximum
value at k=k0, the value of � for �k=k0

=0 gives the instability
threshold �c,

�c = � 2

3�
�� + �k0

2 − �a0��1/2
. �17�

When ���c, �k is negative for all values of k. In other
words, the homogeneous pattern, i.e., 
�r�=0, is stable and
no inhomogeneous pattern tends to appear for ���c. The
threshold curve for nonuniform patterns in Fig. 1 �the dashed
line� is given by Eq. �13� with �=�c.

Now, let us discuss how a nonuniform pattern disappears
near the threshold. Taking 
�r , t�=A cos k0x which is one of
the simplest stable patterns and substituting it into Eq. �14�,
we have

��1 −
3

2
�2�� + �k0

2 − �a0 −
3

4
�A2�A cos k0x

−
�

4
A3 cos 3k0x = 0. �18�

Neglecting the higher harmonics �i.e., cos 3k0x�, we obtain

A =� 4

3�
��1 −

3

2
�2�� + �k0

2 − �a0�1/2
. �19�

The amplitude A of the pattern decreases monotonically in
terms of � and vanishes at �=�c. Namely, the amplitude of

the pattern diminishes near the threshold. This behavior is
found in Fig. 2. The same behavior can be derived for a
concentric-ring pattern, which needs more complex calcula-
tions.

The validity of the above discussion is examined by com-
paring numerical results with theoretical estimates. Actually,
Fig. 1 indicates that the theoretical threshold is in good
agreement with the numerical one for high frequencies
�� /2
�0.5�. More quantitative comparisons are given in
Table I for � /2
�0.5. The numerical and theoretical values
of � and A are compared in it for the data near the threshold.
They are obtained from the profiles of domain patterns.
Namely, the one-cycle time sequence of the profiles is used
in order to estimate them. The theoretical value of � is cal-
culated from Eq. �13�, and that of A is calculated in two
ways: the value of � in Eq. �19� is given by �I� the value from
simulations and �II� the theoretical value. The values of A
estimated from simulations and Theory �I� are in good agree-
ment. Moreover, when the numerical and theoretical values
of � are close, the value of A from Theory �II� also has a
similar value to the corresponding numerical A.

IV. DISCUSSION

Now, we consider how concentric-ring patterns appear
around a strong defect in this system, employing the time-
averaged model. Actually, the time-averaged model �14�
without a strong defect can also produce concentric-ring pat-
terns. If the initial condition is given as 
�r=0�=1 at the
center and 
�r�=−1 anywhere else, then concentric-ring pat-
terns, as shown in Fig. 3, are demonstrated by the time-
averaged model without a strong defect. The values of � for
Figs. 3�a� and 3�b� are given by �=0.69 and �=5, which
correspond to those for Figs. 1�a� and 1�b�, respectively. One
sees that Figs. 3�a� and 1�a� look very similar. They are ob-

TABLE I. Numerical and theoretical values of � and A. The numerical value of � is obtained from the
one-cycle sequence of the profiles of domain patterns. The theoretical value of � is calculated from Eq. �13�,
and the values of A for Theory �I� and Theory �II� are given by Eq. �19� with the numerical and theoretical
values of �, respectively.

� h0

� A

Simulation Theory Simulation Theory �I� Theory �II�

0.5 2.30 	0.51 0.68 	0.63 0.67 0.20

2.38 0.69 0.70 0 0 0

2.45 0.71 0.72 0 0 0

0.667 3.00 	0.65 0.69 	0.33 0.35 0.17

3.05 	0.69 0.70 	0.12 0.13 0

3.10 0.70 0.71 0 0 0

0.8 3.55 	0.67 0.69 	0.27 0.27 0.17

3.60 	0.69 0.69 	0.14 0.13 0.07

3.65 0.70 0.70 0 0 0

1.0 4.35 	0.66 0.68 	0.29 0.31 0.22

4.45 	0.69 0.69 0.11 0.13 0.07

4.55 0.71 0.71 0 0 0
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served near the threshold for nonuniform patterns, where the
time-averaged model is valid. Near the threshold, the linear
growth rate �k given by Eq. �16� is very small, which means
that the time scale of pattern formation is very slow. In fact,
it takes more than 10 times longer time to obtain Fig. 3�a�
than Fig. 3�b�. If the initial pattern was completely uniform,
nonuniform patterns could not appear easily. In other words,
the initial condition employed here causes concentric rings
on a uniform initial pattern �except for the center� as one of
the simplest patterns. This situation is very similar to that of
Fig. 1�a�: the strong defect in the original model behaves as
a kind of boundary condition in the almost uniform pattern
near the threshold. Since the growth rate of the instability is
very slow near the threshold, no patterns except for concen-
tric rings can grow for Figs. 3�a� or 1�a�. The growth rate is
expected to be relevant to the correlation length, which is
related to the number of concentric rings. From analogy with
critical phenomena, one can estimate that the correlation
length would be proportional to �k0

−1/2, where �k0
=�k=k0

.
Therefore, the correlation length diverges near the threshold,
as �k0

→0. This is the mechanism of the emergence of a
concentric-ring pattern around a strong defect and also the
reason why the boundaries of the concentric-ring-pattern re-
gion are unclear in the phase diagram in Fig. 1.

In contrast, Fig. 3�b� has a few concentric rings, although
stripes �or mazes� spread outside the rings. The stripes grow
independently from the concentric rings because of rather
large �k’s. The difference between Figs. 3�b� and 1�b� comes
out not only because the time-averaged model is invalid far
from the threshold, but also because the initial condition em-
ployed here is pretty different from the situation for Fig.
1�b�.

The time-averaged model is also invalid for low frequen-
cies. This is evident from Fig. 1 in which the theoretical
threshold line is not consistent with the numerical one for
� /2
�0.5. The failure of the time-averaged model in a
low-frequency region comes from the assumption ��r , t�
=�0+
�r , t�. The assumption is valid when the time scales

of the rapidly oscillating part and the slowly varying part are
well separated. For low frequencies, their separation is not
sufficient. If a multi-time-scale technique were applied, a
better theoretical threshold line would be obtained.

The concentric-ring patterns shown in this paper are
purely numerical results, although they suggest a possible
mechanism about the formation of the patterns. Since the
characteristics of domain patterns strongly depend on experi-
mental conditions and samples, it is rather hard to compare
experimental data with the results obtained in this paper.
However, we can suggest that concentric-ring patterns ap-
pear in a certain range of the field strength and frequency,
which is located above a labyrinth-pattern region. In fact,
also in experiments, spirals and concentric rings are often
observed near the threshold of nonuniform patterns �14,15�,
although they are not always centered at a strong defect but
often move around. Incidentally, for typical ferromagnetic
garnet films, the order of the characteristic domain width is
about 10–100 �m and that of the frequency for lattices,
spirals, or concentric rings is about 0.1–100 kH �14,15�.

V. CONCLUSIONS

In this paper, effects of an oscillating field have been in-
vestigated, and the emergence of concentric-ring patterns
surrounding a strong defect has been discussed. The numeri-
cal simulations show that the concentric-ring pattern appears
in the high-frequency region near the threshold for nonuni-
form patterns. The simulated profiles of the concentric-ring
pattern indicate that the pattern consists of two parts �except
for the vicinity of the defect�: a rapidly oscillating spatially
homogeneous part and a nonuniform pattern part. This fact
assures that the time-averaged model is suitable for the the-
oretical analysis. The theoretical threshold line is in good
agreement with the numerical one in a high-frequency re-
gion. When the rapidly oscillating field makes the state close
to the threshold, the concentric-ring pattern appears due to
the strong defect which is an effective boundary condition.

In conclusion, the validity of the time-averaged model has
been demonstrated in the presence of a rapidly oscillating
filed. It gives the good estimate of the threshold for nonuni-
form patterns when the field frequency is high. Moreover, it
is revealed that ideal and interesting patterns such as
concentric-ring patterns can appear near the threshold, de-
pending on boundary conditions.
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FIG. 3. Domain patterns simulated by using the time-averaged
model �14� without a strong defect: The parameters for �a� �
=0.69, and �=0.5. �a� and �b� correspond to those of Figs. 1�a� and
1�b�, respectively.
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